Class = require 'hump.class' require 'entities/physicsentity' require 'settings' require 'entities/debug' Matrix = require 'matrix' VectorLight = require 'hump/vector-light' require 'utils' require 'machinegun' local function sign(v) if v >= 0 then return 1 else return -1 end end local lift = function(angle) return 1.68429 * math.exp(-math.pow(angle / math.pi * 180.0 -17.3801, 2.0) / (2.0 * math.pow(15.0, 2.0))) end local fwd_frict_coeff = 0.2 local nor_frict_coeff = 2.0 local tail_frict_coeff = 0.5 local turn_speed = 2.0 local wing_lift = 0.1 * 5 local accel_speed = 1000.0 local decel_speed = 2000.0 local max_motorPower = 4000.0 local plane_area = 10.0 local head_area = 1.0 Plane = Class{ __includes = PhysicsEntity, img = nil, motorPower = 100, debugVectors = {}, turningCw = false, turningCcw = false, accelerating = false, decelerating = false, init = function(self, x, y, level) local density = 50 PhysicsEntity.init(self, x, y, level, "dynamic", 0.2) self.xsize = 5.5 * PIXELS_PER_METER self.ysize = 2.0 * PIXELS_PER_METER self.shape = love.physics.newRectangleShape(self.xsize, self.ysize) PhysicsEntity.attachShape(self, density) self.body:setX(self.x + self.xsize / 2) self.body:setY(self.y - self.ysize / 2) self.body:setLinearVelocity(100, 0) self.body:setAngle(0) self.angle = 0 self.img = love.graphics.newImage("resources/graphics/box-50x50.png"); self.quad = love.graphics.newQuad(0, 0, self.xsize, self.ysize, self.img:getWidth(), self.img:getHeight()) self.machinegun = MachineGun(self, "vickers77") end; getGunPosition = function(self) local x = self.body:getX() local y = self.body:getY() local pos = rad_dist_to_xy(self.angle, self.xsize / 2) return {x + pos[1], y + pos[2]} end; accelerate = function(self, down) self.accelerating = down end; decelerate = function(self, down) self.decelerating = down end; shoot = function(self, down) if down then self.machinegun:startShooting() else self.machinegun:stopShooting() end end; update = function(self, dt) debugVectors = {} PhysicsEntity.update(self, dt) self.machinegun:update(dt) self.x, self.y = self.fixture:getBoundingBox() self.angle = self.body:getAngle() local vel_x, vel_y = self.body:getLinearVelocity() local abs_vel = VectorLight.len(vel_x, vel_y) if self.accelerating then self.motorPower = math.min(max_motorPower, self.motorPower + dt * accel_speed) end if self.decelerating then self.motorPower = math.max(0.0, self.motorPower - dt * accel_speed) end -- -- local base = -- let base = V.base (V.vec_of_ang (~-(body#get_angle))) in local basde = Matrix{{math.cos(-self.angle), math.sin(-self.angle)}, {math.cos(-self.angle + math.pi / 2), math.sin(-self.angle + math.pi / 2)}} local to_base = function(x, y) local m = Matrix.mul(basde, Matrix{{x}, {y}}) -- print("to_base", x, y, "->", Matrix.tostring(m), " = ", m[1][1], m[2][1]) return m end -- print("-") -- print(Matrix.tostring(base)) local fwd_x, fwd_y = VectorLight.rotate(self.angle, 1, 0) local normal_x, normal_y = VectorLight.perpendicular(fwd_x, fwd_y) local fwd_vel = VectorLight.dot(vel_x, vel_y, fwd_x, fwd_y) local normal_vel = VectorLight.dot(vel_x, vel_y, normal_x, normal_y) -- print("fwd_vel", fwd_vel, "normal_vel", normal_vel, "vel_x", vel_x, "vel_y", vel_y, "normal_x", normal_x, "normal_y", normal_y) table.insert(debugVectors, DebugVector("vel", self.body:getX(), self.body:getY(), vel_x, vel_y)) table.insert(debugVectors, DebugVector("fwd", self.body:getX(), self.body:getY(), fwd_x, fwd_y)) table.insert(debugVectors, DebugVector("normal", self.body:getX(), self.body:getY(), normal_x, normal_y)) local tail_speed = self.body:getAngularVelocity() * math.pi * 2.0 * self.xsize / 2.0 local tail_vel = to_base(0, tail_speed) -- hmm?! not tail_speed, 0? local abs_tail_vel_x, abs_tail_vel_y = VectorLight.add(vel_x, vel_y, tail_vel[1][1], tail_vel[2][1]) table.insert(debugVectors, DebugVector("tail", self.body:getX(), self.body:getY(), tail_vel[1][1], tail_vel[2][1])) --print("absolute tail veloicty: ", abs_tail_vel_x, abs_tail_vel_y) local head_angle = self.angle local rel_force = function(label, force_x, force_y, rel_at_x, rel_at_y) -- rdx, rdy = VectorLight.add(rdx, rdy, self.body:getX(), self.body:getY()) local base_force = to_base(force_x, force_y) local base_rel_at = to_base(rel_at_x, rel_at_y) base_rel_at_x, base_rel_at_y = VectorLight.add(base_rel_at[1][1], base_rel_at[2][1], self.body:getX(), self.body:getY()) self.body:applyForce(base_force[1][1], base_force[2][1], base_rel_at_x, base_rel_at_y) at_x, at_y = VectorLight.add(base_rel_at_x, base_rel_at_y, base_force[1][1], base_force[2][1]) --print(at_x, at_y) -- print("base matrix", Matrix.tostring(base)) -- print("force", force_x, force_y) -- print("force after transformation", Matrix.tostring(to_base(force_x, force_y))) -- print("base_force", base_force[1][1], base_force[2][1]) -- print("base_force'", Matrix.tostring(base_force)) table.insert(debugVectors, DebugVector(label, base_rel_at_x, base_rel_at_y, base_force[1][1], base_force[2][1])) end local speed_angle if abs_vel < 1.0 then speed_angle = head_angle else speed_angle = math.atan2(vel_y, vel_x) end local air_wing_angle local tmp tmp = head_angle - speed_angle if tmp > math.pi then air_wing_angle = tmp - 2.0 * math.pi else air_wing_angle = tmp end local lift_coeff = lift(air_wing_angle) -- print("lift coeff: ", lift_coeff) -- motor local dx, dy = VectorLight.rotate(self.angle, self.motorPower * 10.0 * PIXELS_PER_METER, 0) self.body:applyForce(dx, dy); -- table.insert(debugVectors, DebugVector(self.body:getX(), self.body:getY(), dx, dy)) -- (* self#add_force "fwddrag" *) -- (* (Gg.V2.smul (fwd_frict_coeff *. fwd_vel ** 2.0 *. head_area) (V.unit (negate vel))) *) -- (* (to_base (Gg.V2.v 0.0 0.0)); *) local airdrag = -fwd_frict_coeff * math.pow(fwd_vel, 2.0) * head_area rel_force("airdrag", airdrag, 0, 0, 0) -- Air friction (and drag?) opposes movement towards plane velocity normal also -- hdd drag local hddrag_x, hddrag_y = VectorLight.mul(nor_frict_coeff * math.pow(normal_vel, 2.0) * plane_area * sign(normal_vel), 0, -1.0) local b = to_base(-1.0, 0.0) rel_force("hddrag", hddrag_x, hddrag_y, -self.xsize / 2, 0); -- self.body:applyForce(hddrag_x, hddrag_y, b[1][1], b[2][1]) local lift_x, lift_y = VectorLight.mul(wing_lift * math.pow(fwd_vel, 2.0) * lift_coeff, 0, -1) rel_force("lift", lift_x, lift_y, self.xsize * 0.8, 0) -- if self.turningCcw then -- dx, dy = VectorLight.rotate(self.angle, 0, 50000) -- elseif self.turningCw then -- dx, dy = VectorLight.rotate(self.angle, 0, -50000) -- end if self.turningCcw then dx, dy = 0, -turn_speed elseif self.turningCw then dx, dy = 0, turn_speed end if self.turningCw or self.turningCcw then dx, dy = VectorLight.mul(turn_speed * math.pow(fwd_vel, 2.0) * sign(fwd_vel), dx, dy) -- print("dx", dx, "dy", dy, "tail_speed", tail_speed) -- self.body:applyForce(dx, dy, self.body:getX() + rdx, self.body:getY() + rdy) rel_force("turn", dx, dy, -0.4 * self.xsize, 0); end -- print(dx, dy) -- table.insert(debugVectors, DebugVector(self.x + width / 2, self.y + height / 2, 0, -100)) -- table.insert(debugVectors, DebugVector(self.x, self.y, -100, 0)) -- table.insert(debugVectors, DebugVector(self.x + 55, self.y + 10, dx, dy) end; draw = function(self) PhysicsEntity.draw(self) love.graphics.draw(self.img, self.quad, self.body:getX(), self.body:getY(), self.angle, 1, 1, self.xsize / 2, self.ysize / 2) drawDebugVectors(debugVectors) end; cw = function(self, isTurning) self.turningCw = isTurning end; ccw = function(self, isTurning) self.turningCcw = isTurning end; }